首页
文献服务
文献资源
外文期刊
外文会议
中文期刊
专业机构
智能制造
高级检索
版权声明
使用帮助
Subexponential asymptotics of asymptotically block-Toeplitz and upper block-Hessenberg Markov chains
     
  
  
刊名:
Queueing systems: Theory and applications
作者:
Masuyama, Hiroyuki
(Tokyo Metropolitan Univ)
刊号:
513LB020
ISSN:
0257-0130
出版年:
2022
年卷期:
2022, vol.102, no.1/2
页码:
175-217
总页数:
43
分类号:
O13
关键词:
Subexponential asymptotics
;
Upper block-Hessenberg (UBH) Markov chain
;
Asymptotically block-Toeplitz structure
;
Retrial queue
;
Balking queue
;
STATIONARY PROBABILITY VECTORS
;
LIGHT-TAILED ASYMPTOTICS
;
QUEUING-PROCESSES
;
M/G/1-TYPE
;
DISTRIBUTIONS
;
LENGTH
参考中译:
语种:
eng
文摘:
This paper studies the subexponential asymptotics of the stationary distribution vector of an asymptotically block-Toeplitz and upper block-Hessenberg (atUBH) Markov chain in discrete time. The atUBH Markov chain is a kind of the upper block-Hessenberg (UBH) one and is a generalization of the M/G/1-type one. The atUBH Markov chain typically arises from semi-Markovian retrial queues, as the queue-length process, its embedded process, or appropriately time-scaled versions of these processes. In this paper, we present subexponential and locally subexponential asymptotic formulas for the stationary distribution vector. We then extend the locally subexponential asymptotic formula to a continuous-time version of the atUBH Markov chain by uniformization and change of time scale. This extension expands the applicability of the locally subexponential asymptotic formula.
©2016机械工业出版社(机械工业信息研究院) 京ICP备05055788号-35